Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evolution and diversity of invertase genes in Populus trichocarpa.

Identifieur interne : 003928 ( Main/Exploration ); précédent : 003927; suivant : 003929

Evolution and diversity of invertase genes in Populus trichocarpa.

Auteurs : Philip N. Bocock [États-Unis] ; Alison M. Morse ; Christopher Dervinis ; John M. Davis

Source :

RBID : pubmed:17938954

Descripteurs français

English descriptors

Abstract

Invertase (EC 3.2.1.26) plays a key role in carbon utilization as it catalyzes the irreversible hydrolysis of sucrose into glucose and fructose. The invertase family in plants is composed of two sub-families thought to have distinct evolutionary origins and can be distinguished by their pH optima for activity: acid invertases and neutral/alkaline invertases. The acid invertases apparently originated in eubacteria and are targeted to the cell wall and vacuole, while neutral/alkaline invertases apparently originated in cyanobacteria and function in the cytosol. The recently sequenced genome of Populus trichocharpa (Torr. and Gray) allowed us to identify the genes encoding invertase in this woody perennial. Here we describe the identification of eight acid invertase genes; three of which belong to the vacuolar targeted group (PtVIN1-3), and five of which belong to the cell wall targeted group (PtCIN1-5). Similarly, we report the identification of 16 neutral/alkaline invertase genes (PtNIN1-16). Expression analyses using whole genome microarrays and RT-PCR reveal evidence for expression of all invertase family members. An examination of the micro-syntenic regions surrounding the poplar invertase genes reveals extensive colinearity with Arabidopsis invertases. We also find evidence for expression of a novel intronless vacuolar invertase (PtVIN1), which apparently arose from a processed PtVIN2 transcript that re-inserted into the genome. To our knowledge, this is the first intronless invertase found in plants. This work increases the understanding of the role this family plays in carbon allocation and partitioning in forest trees as well as its evolutionary development.

DOI: 10.1007/s00425-007-0639-3
PubMed: 17938954


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Evolution and diversity of invertase genes in Populus trichocarpa.</title>
<author>
<name sortKey="Bocock, Philip N" sort="Bocock, Philip N" uniqKey="Bocock P" first="Philip N" last="Bocock">Philip N. Bocock</name>
<affiliation wicri:level="2">
<nlm:affiliation>Plant Molecular and Cellular Biology Program, University of Florida, PO Box 110690, Gainesville, FL 32611, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Plant Molecular and Cellular Biology Program, University of Florida, PO Box 110690, Gainesville, FL 32611</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Morse, Alison M" sort="Morse, Alison M" uniqKey="Morse A" first="Alison M" last="Morse">Alison M. Morse</name>
</author>
<author>
<name sortKey="Dervinis, Christopher" sort="Dervinis, Christopher" uniqKey="Dervinis C" first="Christopher" last="Dervinis">Christopher Dervinis</name>
</author>
<author>
<name sortKey="Davis, John M" sort="Davis, John M" uniqKey="Davis J" first="John M" last="Davis">John M. Davis</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:17938954</idno>
<idno type="pmid">17938954</idno>
<idno type="doi">10.1007/s00425-007-0639-3</idno>
<idno type="wicri:Area/Main/Corpus">003A43</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003A43</idno>
<idno type="wicri:Area/Main/Curation">003A43</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003A43</idno>
<idno type="wicri:Area/Main/Exploration">003A43</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Evolution and diversity of invertase genes in Populus trichocarpa.</title>
<author>
<name sortKey="Bocock, Philip N" sort="Bocock, Philip N" uniqKey="Bocock P" first="Philip N" last="Bocock">Philip N. Bocock</name>
<affiliation wicri:level="2">
<nlm:affiliation>Plant Molecular and Cellular Biology Program, University of Florida, PO Box 110690, Gainesville, FL 32611, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Plant Molecular and Cellular Biology Program, University of Florida, PO Box 110690, Gainesville, FL 32611</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Morse, Alison M" sort="Morse, Alison M" uniqKey="Morse A" first="Alison M" last="Morse">Alison M. Morse</name>
</author>
<author>
<name sortKey="Dervinis, Christopher" sort="Dervinis, Christopher" uniqKey="Dervinis C" first="Christopher" last="Dervinis">Christopher Dervinis</name>
</author>
<author>
<name sortKey="Davis, John M" sort="Davis, John M" uniqKey="Davis J" first="John M" last="Davis">John M. Davis</name>
</author>
</analytic>
<series>
<title level="j">Planta</title>
<idno type="ISSN">0032-0935</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (enzymology)</term>
<term>Arabidopsis (genetics)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Multigene Family (MeSH)</term>
<term>Oligonucleotide Array Sequence Analysis (MeSH)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>Reverse Transcriptase Polymerase Chain Reaction (MeSH)</term>
<term>Synteny (MeSH)</term>
<term>beta-Fructofuranosidase (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arabidopsis (enzymologie)</term>
<term>Arabidopsis (génétique)</term>
<term>Famille multigénique (MeSH)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>RT-PCR (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Synténie (MeSH)</term>
<term>Séquençage par oligonucléotides en batterie (MeSH)</term>
<term>beta-Fructofuranosidase (génétique)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>beta-Fructofuranosidase</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Arabidopsis</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Populus</term>
<term>beta-Fructofuranosidase</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Evolution, Molecular</term>
<term>Gene Expression Regulation, Plant</term>
<term>Multigene Family</term>
<term>Oligonucleotide Array Sequence Analysis</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
<term>Synteny</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Famille multigénique</term>
<term>RT-PCR</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Synténie</term>
<term>Séquençage par oligonucléotides en batterie</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Invertase (EC 3.2.1.26) plays a key role in carbon utilization as it catalyzes the irreversible hydrolysis of sucrose into glucose and fructose. The invertase family in plants is composed of two sub-families thought to have distinct evolutionary origins and can be distinguished by their pH optima for activity: acid invertases and neutral/alkaline invertases. The acid invertases apparently originated in eubacteria and are targeted to the cell wall and vacuole, while neutral/alkaline invertases apparently originated in cyanobacteria and function in the cytosol. The recently sequenced genome of Populus trichocharpa (Torr. and Gray) allowed us to identify the genes encoding invertase in this woody perennial. Here we describe the identification of eight acid invertase genes; three of which belong to the vacuolar targeted group (PtVIN1-3), and five of which belong to the cell wall targeted group (PtCIN1-5). Similarly, we report the identification of 16 neutral/alkaline invertase genes (PtNIN1-16). Expression analyses using whole genome microarrays and RT-PCR reveal evidence for expression of all invertase family members. An examination of the micro-syntenic regions surrounding the poplar invertase genes reveals extensive colinearity with Arabidopsis invertases. We also find evidence for expression of a novel intronless vacuolar invertase (PtVIN1), which apparently arose from a processed PtVIN2 transcript that re-inserted into the genome. To our knowledge, this is the first intronless invertase found in plants. This work increases the understanding of the role this family plays in carbon allocation and partitioning in forest trees as well as its evolutionary development.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17938954</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>07</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0032-0935</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>227</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2008</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Planta</Title>
<ISOAbbreviation>Planta</ISOAbbreviation>
</Journal>
<ArticleTitle>Evolution and diversity of invertase genes in Populus trichocarpa.</ArticleTitle>
<Pagination>
<MedlinePgn>565-76</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Invertase (EC 3.2.1.26) plays a key role in carbon utilization as it catalyzes the irreversible hydrolysis of sucrose into glucose and fructose. The invertase family in plants is composed of two sub-families thought to have distinct evolutionary origins and can be distinguished by their pH optima for activity: acid invertases and neutral/alkaline invertases. The acid invertases apparently originated in eubacteria and are targeted to the cell wall and vacuole, while neutral/alkaline invertases apparently originated in cyanobacteria and function in the cytosol. The recently sequenced genome of Populus trichocharpa (Torr. and Gray) allowed us to identify the genes encoding invertase in this woody perennial. Here we describe the identification of eight acid invertase genes; three of which belong to the vacuolar targeted group (PtVIN1-3), and five of which belong to the cell wall targeted group (PtCIN1-5). Similarly, we report the identification of 16 neutral/alkaline invertase genes (PtNIN1-16). Expression analyses using whole genome microarrays and RT-PCR reveal evidence for expression of all invertase family members. An examination of the micro-syntenic regions surrounding the poplar invertase genes reveals extensive colinearity with Arabidopsis invertases. We also find evidence for expression of a novel intronless vacuolar invertase (PtVIN1), which apparently arose from a processed PtVIN2 transcript that re-inserted into the genome. To our knowledge, this is the first intronless invertase found in plants. This work increases the understanding of the role this family plays in carbon allocation and partitioning in forest trees as well as its evolutionary development.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bocock</LastName>
<ForeName>Philip N</ForeName>
<Initials>PN</Initials>
<AffiliationInfo>
<Affiliation>Plant Molecular and Cellular Biology Program, University of Florida, PO Box 110690, Gainesville, FL 32611, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Morse</LastName>
<ForeName>Alison M</ForeName>
<Initials>AM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dervinis</LastName>
<ForeName>Christopher</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Davis</LastName>
<ForeName>John M</ForeName>
<Initials>JM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>10</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Planta</MedlineTA>
<NlmUniqueID>1250576</NlmUniqueID>
<ISSNLinking>0032-0935</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>EC 3.2.1.26</RegistryNumber>
<NameOfSubstance UI="D043324">beta-Fructofuranosidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026801" MajorTopicYN="N">Synteny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D043324" MajorTopicYN="N">beta-Fructofuranosidase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2007</Year>
<Month>08</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2007</Year>
<Month>09</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>7</Month>
<Day>22</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17938954</ArticleId>
<ArticleId IdType="doi">10.1007/s00425-007-0639-3</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 1981 Jul 16;292(5820):237-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7254315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2005 May;60(5):615-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15983871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Funct Genomics. 2003;3(1-4):95-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12836689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2005 Oct;21(10):539-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16098633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2002 Jun 18;3(7):RESEARCH0034</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12184808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2003 Jun;164(2):533-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12807774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1998 May;15(5):552-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9580984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2002 Aug;115(4):504-512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12121456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2007 Jan;17(1):23-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2002 Apr;43(4):452-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11978873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1997 Sep 15;197(1-2):239-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9332372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2005 Nov;20(11):591-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16701441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2003 Jul;25(7):637-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12815719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 1999 Oct;4(10):401-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10498964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 15;31(14):e73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12853650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1994 Oct 1;225(1):61-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7523124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 1996 Aug;47 Spec No:1187-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21245247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1995 Apr;28(1):189-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7787183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12883005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jul;167(1):165-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15948839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1992 May 15;295(1):61-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1575518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 30;279(18):18903-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14973124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 1998 Nov 15;33(3):383-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9829697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Jul;16(7):1667-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2003 Oct;165(2):821-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14573491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1990 Nov;2(11):1107-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2152110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Sep;115(1):273-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9306701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1998 Dec;207(2):259-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9951726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Phylogenet Evol. 2003 Dec;29(3):464-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14615187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1997 Apr 25;268(1):78-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9149143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2001 Dec;11(6):681-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11682313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Nov 10;290(5494):1151-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11073452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jul 23;279(30):31804-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15148314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Appl Biosci. 1996 Aug;12(4):357-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8902363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Apr;169(4):2209-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15687268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1996 Jun 15;24(12):2347-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8710506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2003 Apr;216(6):951-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12687362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1998 Jun;149(2):765-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9611190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Sep;121(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10482654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Dec;9(12):606-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15564128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Dec;112(4):1513-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8972597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2000;34:401-437</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11092833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):12055-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9751789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2003 Jan;54(382):525-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12508063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2000 Jan;42(1):225-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10688139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2004 Aug 18;4:14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15317655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1986 Feb;83(3):679-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2418440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Mar 27;422(6930):433-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12660784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 2000;35(4):253-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11005202</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Floride</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Davis, John M" sort="Davis, John M" uniqKey="Davis J" first="John M" last="Davis">John M. Davis</name>
<name sortKey="Dervinis, Christopher" sort="Dervinis, Christopher" uniqKey="Dervinis C" first="Christopher" last="Dervinis">Christopher Dervinis</name>
<name sortKey="Morse, Alison M" sort="Morse, Alison M" uniqKey="Morse A" first="Alison M" last="Morse">Alison M. Morse</name>
</noCountry>
<country name="États-Unis">
<region name="Floride">
<name sortKey="Bocock, Philip N" sort="Bocock, Philip N" uniqKey="Bocock P" first="Philip N" last="Bocock">Philip N. Bocock</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003928 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003928 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:17938954
   |texte=   Evolution and diversity of invertase genes in Populus trichocarpa.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:17938954" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020